Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 409
Filter
1.
Journal of Central South University(Medical Sciences) ; (12): 771-781, 2023.
Article in English | WPRIM | ID: wpr-982347

ABSTRACT

Exosomes are a class of extracellular vesicles with a structure of lipid bilayer-membrane. In the central nervous system (CNS), exosomes can be secreted from both neurons and glial cells. Exosomes released into the extracellular matrix can freely cross the blood-brain barrier and function as crucial carriers of cellular communication and substance exchange in the CNS. Exosomes play a key role in the pathological process of mental disorders such as schizophrenia, depression, and bipolar disorder, and they have the potential to be used as a targeted carrier of antipsychotic medications. Exosomes are likely to become a new tool in the future to aid in the early prevention, accurate diagnosis, and effective treatment for people with mental disorders.


Subject(s)
Humans , Exosomes/physiology , Extracellular Vesicles/physiology , Central Nervous System , Mental Disorders , Blood-Brain Barrier
2.
Journal of Central South University(Medical Sciences) ; (12): 648-662, 2023.
Article in English | WPRIM | ID: wpr-982334

ABSTRACT

OBJECTIVES@#Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO).@*METHODS@#Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting.@*RESULTS@#The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO.@*CONCLUSIONS@#Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.


Subject(s)
Animals , Rats , Blood-Brain Barrier/metabolism , Brain Ischemia , Claudin-5/metabolism , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/metabolism , Occludin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Reperfusion Injury/metabolism
3.
Chinese journal of integrative medicine ; (12): 448-458, 2023.
Article in English | WPRIM | ID: wpr-982293

ABSTRACT

OBJECTIVE@#To investigate the molecular mechanisms underlying the beneficial effect of electroacupuncture (EA) in experimental models of Alzheimer's disease (AD) in vivo.@*METHODS@#Senescence-accelerated mouse prone 8 (SAMP8) mice were used as AD models and received EA at Yingxiang (LI 20, bilateral) and Yintang (GV 29) points for 20 days. For certain experiments, SAMP8 mice were injected intravenously with human fibrin (2 mg). The Morris water maze test was used to assess cognitive and memory abilities. The changes of tight junctions of blood-brain barrier (BBB) in mice were observed by transmission electron microscope. The expressions of fibrin, amyloid- β (Aβ), and ionized calcium-binding adapter molecule 1 (IBa-1) in mouse hippocampus (CA1/CA3) were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR), Western blot or immunohistochemical staining. The expression of fibrin in mouse plasma was detected by enzyme-linked immunosorbent assay. The expressions of tight junction proteins zonula occludens-1 and claudin-5 in hippocampus were detected by qRT-PCR and immunofluorescence staining. Apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining.@*RESULTS@#Fibrin was time-dependently deposited in the hippocampus of SAMP8 mice and this was inhibited by EA treatment (P<0.05 or P<0.01). Furthermore, EA treatment suppressed the accumulation of Aβ in the hippocampus of SAMP8 mice (P<0.01), which was reversed by fibrin injection (P<0.05 or P<0.01). EA improved SAMP8 mice cognitive impairment and BBB permeability (P<0.05 or P<0.01). Moreover, EA decreased reactive oxygen species levels and neuroinflammation in the hippocampus of SAMP8 mice, which was reversed by fibrin injection (P<0.05 or P<0.01). Mechanistically, EA inhibited the promoting effect of fibrin on the high mobility group box protein 1 (HMGB1)/toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nicotinamide adenine dinucleotide phosphate (NADPH) signaling pathways (P<0.01).@*CONCLUSION@#EA may potentially improve cognitive impairment in AD via inhibition of fibrin/A β deposition and deactivation of the HMGB1/TLR4 and RAGE/NADPH signaling pathways.


Subject(s)
Mice , Humans , Animals , NADP/metabolism , Toll-Like Receptor 4 , HMGB1 Protein/metabolism , Receptor for Advanced Glycation End Products/metabolism , Blood-Brain Barrier/metabolism , Neuroinflammatory Diseases , Electroacupuncture , Alzheimer Disease/therapy , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism
4.
Acta Physiologica Sinica ; (6): 108-114, 2023.
Article in Chinese | WPRIM | ID: wpr-970111

ABSTRACT

Radiation-induced brain injury is a serious complication after cranio-cerebral radiotherapy, which affects the patient's quality of life and survival. A large number of studies have shown that various mechanisms such as neuronal apoptosis, blood-brain barrier damage, and synaptic dysfunction may be related to radiation-induced brain injury. Acupuncture has an important role in clinical rehabilitation of various brain injuries. As a new type of acupuncture, electroacupuncture has the characteristics of strong control ability, uniform and long-lasting stimulation, and is widely used in clinic. This article reviews the effects and mechanisms of electroacupuncture on radiation-induced brain injury, in order to provide a theoretical basis and experimental support for reasonable clinical application.


Subject(s)
Humans , Electroacupuncture , Quality of Life , Brain , Brain Injuries , Blood-Brain Barrier
5.
Chinese Medical Journal ; (24): 780-787, 2023.
Article in English | WPRIM | ID: wpr-980829

ABSTRACT

Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel and minimally invasive technology. Since the US Food and Drug Administration approved unilateral ventral intermediate nucleus-MRgFUS for medication-refractory essential tremor in 2016, studies on new indications, such as Parkinson's disease (PD), psychiatric diseases, and brain tumors, have been on the rise, and MRgFUS has become a promising method to treat such neurological diseases. Currently, as the second most common degenerative disease, PD is a research hotspot in the field of MRgFUS. The actions of MRgFUS on the brain range from thermoablation, blood-brain barrier (BBB) opening, to neuromodulation. Intensity is a key determinant of ultrasound actions. Generally, high intensity can be used to precisely thermoablate brain targets, whereas low intensity can be used as molecular therapies to modulate neuronal activity and open the BBB in conjunction with injected microbubbles. Here, we aimed to summarize advances in the application of MRgFUS for the treatment of PD, with a focus on thermal ablation, BBB opening, and neuromodulation, in the hope of informing clinicians of current applications.


Subject(s)
Humans , Parkinson Disease/therapy , Brain , Blood-Brain Barrier , Essential Tremor/surgery , Brain Neoplasms , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 127-135, 2023.
Article in English | WPRIM | ID: wpr-971667

ABSTRACT

Stigmasterol is a plant sterol with anti-apoptotic, anti-oxidative and anti-inflammatory effect through multiple mechanisms. In this study, we further assessed whether it exerts protective effect on human brain microvessel endothelial cells (HBMECs) against ischemia-reperfusion injury and explored the underlying mechanisms. HBMECs were used to establish an in vitro oxygen and glucose deprivation/reperfusion (OGD/R) model, while a middle cerebral artery occlusion (MCAO) model of rats were constructed. The interaction between stigmasterol and EPHA2 was detected by surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA). The results showed that 10 μmol·L-1 stigmasterol significantly protected cell viability, alleviated the loss of tight junction proteins and attenuated the blood-brain barrier (BBB) damage induced by OGD/R in thein vitro model. Subsequent molecular docking showed that stigmasterol might interact with EPHA2 at multiple sites, including T692, a critical gatekeep residue of this receptor. Exogenous ephrin-A1 (an EPHA2 ligand) exacerbated OGD/R-induced EPHA2 phosphorylation at S897, facilitated ZO-1/claudin-5 loss, and promoted BBB leakage in vitro, which were significantly attenuated after stigmasterol treatment. The rat MCAO model confirmed these protective effects in vivo. In summary, these findings suggest that stigmasterol protects HBMECs against ischemia-reperfusion injury by maintaining cell viability, reducing the loss of tight junction proteins, and attenuating the BBB damage. These protective effects are at least meditated by its interaction with EPHA2 and inhibitory effect on EPHA2 phosphorylation.


Subject(s)
Humans , Animals , Rats , Stigmasterol , Phosphorylation , Endothelial Cells , Molecular Docking Simulation , Reperfusion Injury , Blood-Brain Barrier , Glucose , Microvessels , Oxygen
7.
International Journal of Oral Science ; (4): 3-3, 2023.
Article in English | WPRIM | ID: wpr-971594

ABSTRACT

Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/virulence factors have been found in the brain tissues from patients with Alzheimer's disease (AD). The blood-brain barrier (BBB) is essential for keeping toxic substances from entering brain tissues. However, the effect of P. gingivalis bacteremia on BBB permeability and its underlying mechanism remains unclear. In the present study, rats were injected by tail vein with P. gingivalis three times a week for eight weeks to induce bacteremia. An in vitro BBB model infected with P. gingivalis was also established. We found that the infiltration of Evans blue dye and Albumin protein deposition in the rat brain tissues were increased in the rat brain tissues with P. gingivalis bacteremia and P. gingivalis could pass through the in vitro BBB model. Caveolae were detected after P. gingivalis infection in BMECs both in vivo and in vitro. Caveolin-1 (Cav-1) expression was enhanced after P. gingivalis infection. Downregulation of Cav-1 rescued P. gingivalis-enhanced BMECs permeability. We further found P. gingivalis-gingipain could be colocalized with Cav-1 and the strong hydrogen bonding between Cav-1 and arg-specific-gingipain (RgpA) were detected. Moreover, P. gingivalis significantly inhibited the major facilitator superfamily domain containing 2a (Mfsd2a) expression. Mfsd2a overexpression reversed P. gingivalis-increased BMECs permeability and Cav-1 expression. These results revealed that Mfsd2a/Cav-1 mediated transcytosis is a key pathway governing BBB BMECs permeability induced by P. gingivalis, which may contribute to P. gingivalis/virulence factors entrance and the subsequent neurological impairments.


Subject(s)
Animals , Rats , Bacteremia/metabolism , Blood-Brain Barrier/microbiology , Caveolin 1/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Permeability , Porphyromonas gingivalis/pathogenicity , Transcytosis , Virulence Factors/metabolism
8.
Neuroscience Bulletin ; (6): 503-518, 2023.
Article in English | WPRIM | ID: wpr-971573

ABSTRACT

The concept of the glial-vascular unit (GVU) was raised recently to emphasize the close associations between brain cells and cerebral vessels, and their coordinated reactions to diverse neurological insults from a "glio-centric" view. GVU is a multicellular structure composed of glial cells, perivascular cells, and perivascular space. Each component is closely linked, collectively forming the GVU. The central roles of glial and perivascular cells and their multi-level interconnections in the GVU under normal conditions and in central nervous system (CNS) disorders have not been elucidated in detail. Here, we comprehensively review the intensive interactions between glial cells and perivascular cells in the niche of perivascular space, which take part in the modulation of cerebral blood flow and angiogenesis, formation of the blood-brain barrier, and clearance of neurotoxic wastes. Next, we discuss dysfunctions of the GVU in various neurological diseases, including ischemic stroke, spinal cord injury, Alzheimer's disease, and major depression disorder. In addition, we highlight the possible therapies targeting the GVU, which may have potential clinical applications.


Subject(s)
Humans , Neuroglia , Nervous System Diseases , Blood-Brain Barrier , Alzheimer Disease , Glymphatic System
9.
Journal of Southern Medical University ; (12): 323-330, 2023.
Article in Chinese | WPRIM | ID: wpr-971532

ABSTRACT

OBJECTIVE@#To explore the mechanism that mediates the effect of soybean isoflavones (SI) against cerebral ischemia/reperfusion (I/R) injury in light of the regulation of regional cerebral blood flow (rCBF), ferroptosis, inflammatory response and blood-brain barrier (BBB) permeability.@*METHODS@#A total of 120 male SD rats were equally randomized into sham-operated group (Sham group), cerebral I/R injury group and SI pretreatment group (SI group). Focal cerebral I/R injury was induced in the latter two groups using a modified monofilament occlusion technique, and the intraoperative changes of real-time cerebral cortex blood flow were monitored using a laser Doppler flowmeter (LDF). The postoperative changes of cerebral pathological morphology and the ultrastructure of the neurons and the BBB were observed with optical and transmission electron microscopy. The neurological deficits of the rats was assessed, and the severities of cerebral infarction, brain edema and BBB disruption were quantified. The contents of Fe2+, GSH, MDA and MPO in the ischemic penumbra were determined with spectrophotometric tests. Serum levels of TNF-α and IL-1βwere analyzed using ELISA, and the expressions of GPX4, MMP-9 and occludin around the lesion were detected with Western blotting and immunohistochemistry.@*RESULTS@#The rCBF was sharply reduced in the rats in I/R group and SI group after successful insertion of the monofilament. Compared with those in Sham group, the rats in I/R group showed significantly increased neurological deficit scores, cerebral infarction volume, brain water content and Evans blue permeability (P < 0.01), decreased Fe2+ level, increased MDA level, decreased GSH content and GPX4 expression (P < 0.01), increased MPO content and serum levels of TNF-α and IL-1β (P < 0.01), increased MMP-9 expression and lowered occludin expression (P < 0.01). All these changes were significantly ameliorated in rats pretreated with IS prior to I/R injury (P < 0.05 or 0.01).@*CONCLUSION@#SI preconditioning reduces cerebral I/R injury in rats possibly by improving rCBF, inhibiting ferroptosis and inflammatory response and protecting the BBB.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Matrix Metalloproteinase 9/metabolism , Soybeans/metabolism , Occludin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ferroptosis , Blood-Brain Barrier/ultrastructure , Brain Ischemia/metabolism , Cerebral Infarction , Reperfusion Injury/metabolism , Isoflavones/therapeutic use , Infarction, Middle Cerebral Artery
10.
China Journal of Chinese Materia Medica ; (24): 2028-2037, 2022.
Article in Chinese | WPRIM | ID: wpr-928142

ABSTRACT

Precious Tibetan medicine formula is a characteristic type of medicine commonly used in the clinical treatment of central nervous system diseases. Through the summary of modern research on the precious Tibetan medicine formulas such as Ratnasampil, Ershiwuwei Zhenzhu Pills, Ershiwewei Shanhu Pills, and Ruyi Zhenbao Pills, it is found that they have obvious advantages in the treatment of stroke, Alzheimer's disease, epilepsy, angioneurotic headache, and vascular dementia. Modern pharmacological studies have shown that the mechanisms of precious Tibetan medicine formulas in improving central nervous system diseases are that they promote microcirculation of brain tissue, regulate the permeability of the blood-brain barrier, alleviate inflammation, relieve oxidative stress damage, and inhibit nerve cell apoptosis. This review summarizes the clinical and pharmacological studies on precious Tibetan medicine formulas in prevention and treatment of central nervous system diseases, aiming to provide a reference for future in-depth research and innovative discovery of Tibetan medicine against central nervous diseases.


Subject(s)
Humans , Blood-Brain Barrier , Brain , Central Nervous System Diseases , Medicine, Tibetan Traditional , Stroke/drug therapy
11.
Arq. neuropsiquiatr ; 79(1): 56-67, Jan. 2021. tab, graf
Article in English | LILACS | ID: biblio-1153137

ABSTRACT

ABSTRACT Background: Increased concentrations of serum proteins in cerebrospinal fluid (CSF) are interpreted as blood-CSF barrier dysfunction. Frequently used interpretations such as barrier leakage, disruption or breakdown contradict CSF protein data, which suggest a reduced CSF flow rate as the cause. Results: Even the severest barrier dysfunctions do not change the molecular size-dependent selectivity or the interindividual variation of the protein transfer across barriers. Serum protein concentrations in lumbar CSF increase with hyperbolic functions, but the levels of proteins that do not pass the barrier remain constant (brain proteins) or increase linearly (leptomeningal proteins). All CSF protein dynamics above and below a lumbar blockade can also be explained, independent of their barrier passage, by a reduced caudally directed flow. Local accumulation of gadolinium in multiple sclerosis (MS) is now understood as due to reduced bulk flow elimination by interstitial fluid (ISF). Nonlinear change of the steady state in barrier dysfunction and along normal rostro-caudal gradients supports the diffusion/flow model and contradicts obstructions of diffusion pathways. Regardless of the cause of the disease, pathophysiological flow blockages are found in bacterial meningitis, leukemia, meningeal carcinomatosis, Guillain-Barré syndrome, MS and experimental allergic encephalomyelitis. In humans, the fortyfold higher albumin concentrations in early fetal development decrease later with maturation of the arachnoid villi, i.e., with beginning CSF outflow, which contradicts a relevant outflow to the lymphatic system. Respiration- and heartbeat-dependent oscillations do not disturb net direction of CSF flow. Conclusion: Blood-CSF and blood-brain barrier dysfunctions are an expression of reduced CSF or ISF flow rate.


RESUMO Introdução: Concentrações aumentadas de proteínas séricas no líquido cefalorraquidiano são interpretadas como disfunção da barreira (hemato-liquórica) sanguínea do LCR. Interpretações frequentemente usadas, como vazamento de barreira (quebra ou rompimento de barreira), rompimento ou quebra, contradiz os dados de proteína do LCR, que sugerem uma taxa de fluxo reduzida do LCR como a causa. Resultados: Mesmo as disfunções de barreira mais graves não alteram a seletividade dependente do tamanho molecular nem a variação interindividual da transferência de proteína através de barreiras. As concentrações de proteínas séricas no LCR lombar aumentam com as funções hiperbólicas, mas as proteínas que não passam a barreira permanecem constantes (proteínas do cérebro) ou aumentam linearmente (proteínas leptomeningeais). Toda a dinâmica das proteínas do LCR acima e abaixo de um bloqueio lombar também pode ser explicada, independente de sua passagem pela barreira, por um fluxo caudal reduzido. O acúmulo local de gadolínio na esclerose múltipla (EM) é agora entendido como decorrente da redução da eliminação do bulk flow pelo fluido intersticial (FIS). A mudança não linear do estado estacionário na disfunção da barreira e ao longo dos gradientes rostro-caudais normais apoia o modelo de difusão/fluxo e contradiz as obstruções das vias de difusão. Independentemente da causa da doença, os bloqueios fisiopatológicos do fluxo são encontrados na meningite bacteriana, leucemia, carcinomatose meníngea, síndrome de Guillain-Barré, EM e encefalomielite alérgica experimental. Em humanos, as concentrações de albumina quarenta vezes mais altas no desenvolvimento fetal inicial diminuem tarde com a maturação das vilosidades aracnoides, isto é, com o início do fluxo de LCR, o que contradiz um fluxo relevante para o sistema linfático. As oscilações dependentes da respiração e do batimento cardíaco não perturbam a direção do fluxo do LCR. Conclusão: As disfunções das barreiras hemato-liquórica e hemato-encefálica são uma expressão da redução da taxa de fluxo do LCR ou FIS.


Subject(s)
Humans , Brain/metabolism , Blood-Brain Barrier/metabolism , Blood Proteins/metabolism , Cerebrospinal Fluid/metabolism
12.
Rev. cuba. invest. bioméd ; 40(supl.1): e1584, 2021. tab, graf
Article in English | LILACS, CUMED | ID: biblio-1289475

ABSTRACT

Introduction: MASP-2 is a mannose blinding lectin associate to serine protease in cerebrospinal fluid and its dynamics through the blood brain barrier is unknown. Objective: To describe MASP-2 diffusion pattern from blood to cerebrospinal fluid. Methods: A transversal observational prospective study was performed 56 control samples of cerebrospinal fluid and serum were employed. ELISA measured MASP-2. Two groups were made: control patients without organic brain disease with normal cerebrospinal fluid and normal barrier function and patients without inflammatory diseases with a blood cerebrospinal fluid barrier dysfunction. Results: MASP-2 concentration in cerebrospinal fluid increase with augment the Q Albumin. QMASP-2 vs. Q Albumin saturation curve indicates that MASP-2 is interacting with other molecules in the subarachnoid environment. The higher inter-individual variation of cerebrospinal fluid MASP-2 of the control compared to the serum MASP-2 indicates that MASP-2 is a protein derived from blood. Conclusions: MASP-2 in CSF is predominantly blood-derived. The saturation curve demonstrates that MASP-2 interacts with the starters of the lectin pathway like mannose binding lectin, ficolins and collectin LK(AU)


Introducción: MASP2 es una proteína de unión a manosa asociada a una proteasa de serina encontrada en la periferia, pero puede pasar a líquido cefalorraquídeo. Sin embargo, su dinámica a través de la barrera sangre-líquido cefalorraquídeo es aún desconocida. Objetivo: Describir la difusión del MASP-2 desde la sangre al líquido cefalorraquídeo. Métodos: Se realiza estudio observacional prospectivo de corte transversal donde se emplearon 56 muestras de suero y líquido cefalorraquídeo. Fue seleccionado un grupo control con pacientes sin enfermedad orgánica del cerebro, con líquido cefalorraquídeo y función de barrera normal y otro grupo de pacientes sin enfermedades inflamatorias del cerebro con disfunción de barrera sangre-líquido cefalorraquídeo. Resultados: La concentración de MASP-2 en líquido cefalorraquídeo aumentó con el incremento de la Q Albúmina. La curva de saturación de Q MASP-2 contra la Q Albúmina indicó que el MASP-2 se encuentra interactuando con otras moléculas en el espacio subaracnoideo. El aumento del coeficiente de variación individual de MASP-2 en líquido cefalorraquídeo de los controles comparado con el MASP-2 en suero indicó que el MASP-2 es una proteína derivada de la sangre. Conclusiones: La producción de MASP-2 en líquido cefalorraquídeo es predominantemente derivada de la sangre. La curva de saturación demostró que el MASP-2 interactúa con los iniciadores de la vía de las lectinas como lectina unida a manosa, las ficolinas y la colectina LK(AU)


Subject(s)
Humans , Enzyme-Linked Immunosorbent Assay , Blood-Brain Barrier , Cerebrospinal Fluid/physiology , Mannose-Binding Protein-Associated Serine Proteases , Mannose , Cross-Sectional Studies , Prospective Studies
13.
Journal of Zhejiang University. Medical sciences ; (6): 553-560, 2021.
Article in English | WPRIM | ID: wpr-922254

ABSTRACT

To investigate the effects of on behavior and blood brain barrier (BBB) in Alzheimer's disease mice. Thirty-eight 4-month-old APP/PS1 double transgenic mice were randomly divided into three groups: model group, low-dose group and high-dose group. Saline, and 12 g·kg·d were given to each group by continuous gavage once a day for respectively. The changes in activities of daily live and fear conditioning memory behavior of mice were examined by nesting behavior test and fear conditioning test, respectively. The β-amyloid protein (Aβ) depositions in cortex and hippocampal CA1 area of mice were detected by thioflavin T staining. The CD34 and activities fibrinogen (Fib) immunofluorescence double staining were used to determine the vascular endothelial integrity and BBB exudation. Compared with model mice, activities of daily live were significantly improved in low-dose and high-dose groups (both <0.01), the fear memory ability was significantly increased in high-dose group (<0.01). The amount of Aβ deposition in cortex and hippocampal CA1 decreased significantly in high-dose group, the area ratio decreased significantly; the area ratio of Aβ deposition in hippocampal CA1 region in low-dose group also decreased (all <0.05). The proportions of CD34 positive area of cortex in low and high dose groups increased, the percentage of fibrinogen positive area decreased (all <0.05). The proportion of CD34 positive area in hippocampal CA1 region in high-dose group was significantly increased, the percentage of fibrinogen positive area decreased significantly (both <0.05). especially high-dose can improve the activities of daily live and fear conditioning memory function of APP/PS1 mice, reduce the deposition of Aβ in brain. The mechanism may be related to the reduction of BBB permeability and the protection of the integrity of BBB.


Subject(s)
Animals , Mice , Alzheimer Disease , Amyloid beta-Protein Precursor , Blood-Brain Barrier/metabolism , Disease Models, Animal , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Transgenic
14.
Acta cir. bras ; 35(12): e351202, 2020. tab, graf
Article in English | LILACS | ID: biblio-1152683

ABSTRACT

Abstract Purpose: To investigate the therapeutic benefits of Hydroxysafflor yellow A (HSYA) on blood-brain barrier (BBB) vulnerability after traumatic brain injury (TBI) and identify its potential action of mechanisms on TBIinduced injuries. Methods: The rat TBI model was performed by using a controlled cortical impact device. The BBB permeability induced by TBI was measured through Evans Blue dye superflux and western blotting or polymerase chain reaction (PCR) for tight junctional proteins (TJPs). The post-TBI changes in oxidative stress markers, inflammatory response and neuron apoptosis in brain tissue were also tested. Results: Herein, the results showed that HSYA acutely attenuated BBB permeability via increasing the production of the TJPs, including occludin, claudin-1 and zonula occludens protein 24 h after TBI. Additionally, HSYA could suppress the secretion of proinflammatory factors, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α (IL-1β, IL-6, and TNF-α), and also concurrently down-regulate the expression of inflammation-related Toll-like receptor 4/nuclear factor kappa-B (TLR4/NF-kB) protein. These HSYA challenged changes were accompanied by the decreased TBI induced oxidative stress markers and inhibited the expression of apoptosis proteins Bax, caspase-3 and caspase-9. Conclusions: Taken together, all findings suggested that HSYA (30 mg/kg) are against TBI through improving the integrity in BBB, which are associated with the antioxidant, anti-inflammation and antiapoptosis via the probable mechanism of down-regulation of the TLR4/NF-kB pathway, and its in-detail protective mechanisms are under study.


Subject(s)
Animals , Rats , Blood-Brain Barrier , Brain Injuries, Traumatic/drug therapy , Permeability , Quinones , Chalcone/analogs & derivatives , Apoptosis , Oxidative Stress , Inflammation/drug therapy
15.
Journal of Southern Medical University ; (12): 1018-1022, 2020.
Article in Chinese | WPRIM | ID: wpr-828924

ABSTRACT

OBJECTIVE@#To investigate the effects of blocking the activation of ERK pathway on the expression of matrix metalloproteinase-9 (MMP-9) and the formation of cerebral edema in SD rats after brain injury.@*METHODS@#Ninety SD rats were randomly divided into 3 equal groups, including a sham-operated group, modified Feeney's traumatic brain injury model group, and ERK inhibition group where the ERK inhibitor SCH772984 (500 μg/kg) was injected via the femoral vein 15 min before brain trauma. At 2 h and 2 days after brain trauma, the permeability of blood-brain barrier was assessed by Evans blue method, the water content of the brain tissue was determined, and the phosphorylation level of ERK and the expression level of MMP-9 mRNA and protein were measured by RT-PCR and Western blotting.@*RESULTS@#Compared with the sham-operated group, the rats with brain trauma exhibited significantly increased level of ERK phosphorylation at 2 h and significantly increased expression of MMP-9 mRNA and protein 2 days after the injury ( < 0.01). Treatment with the ERK inhibitor significantly decreased the phosphorylation level of ERK after the injury ( < 0.01), suppressed over-expression of MMP-9 mRNA and protein 2 days after the injury ( < 0.01). The permeability of blood-brain barrier increased significantly 2 h after brain trauma ( < 0.05) and increased further at 2 days ( < 0.01); the water content of the brain did not change significantly at 2 h ( > 0.05) but increased significantly 2 d after the injury ( < 0.01). Treatment with the ERK inhibitor significantly lowered the permeability of blood-brain barrier and brain water content after brain trauma ( < 0.01).@*CONCLUSIONS@#Blocking the activation of ERK pathway significantly reduced the over-expression of MMP-9 and alleviates the damage of blood-brain barrier and traumatic brain edema, suggesting that ERK signaling pathway plays an important role in traumatic brain edema by regulating the expression of MMP-9.


Subject(s)
Animals , Rats , Blood-Brain Barrier , Brain Edema , Brain Injuries, Traumatic , MAP Kinase Signaling System , Matrix Metalloproteinase 9 , Rats, Sprague-Dawley
16.
China Journal of Chinese Materia Medica ; (24): 2924-2931, 2020.
Article in Chinese | WPRIM | ID: wpr-828066

ABSTRACT

According to traditional Chinese medicine, "spleen transport" is closely related to the metabolism of substance and energy. Studies have shown that Alzheimer's disease(AD) is a disease related to glucose and lipid metabolism and energy metabolism. The traditional Chinese medicine Jiangpi Recipe can improve the learning ability and memory of AD animal model. Sijunzi Decoction originated from Taiping Huimin Hefang Prescription is the basic prescription for strengthening and nourishing the spleen, with the effects of nourishing Qi and strengthening the spleen. In this experiment, human brain microvascular endothelial cells(HBMEC) and Sijunzi Decoction water extract(0.25, 0.5, 1 mg·L~(-1)) were pre-incubated for 2 h, and then Aβ_(25-35) oligomers(final concentration 40 μmol·L~(-1)) was added for co-culture for 22 hours. The effect of Sijunzi Decoction on the activity of Aβ_(25-35) oligomer injured cells and the expression of related proteins were investigated. Q-TOF-LC-MS was used first for principal component analysis of Sijunzi Decoction water extract. Then MTT assay was used to investigate the effect of Sijunzi Decoction water extract on the proliferation of HBMEC cells. Real-time fluorescence quantitative PCR(RT-qPCR) was employed to detect the mRNA expression of GLUT1, RAGE, and LRP1. The expression of Aβ-related proteins across blood-brain barrier(RAGE, LRP1) was detected by Western blot. The results showed that 40 μmol·L~(-1) Aβ_(25-35) oligomers could induce endothelial cell damage, reduce cell survival, increase expression of RAGE mRNA and RAGE protein, and reduce expression of GLUT1 mRNA, LRP1 mRNA, and LRP1 protein. Sijunzi Decoction water extract could reduce the Aβ_(25-35) oligomer-induced cytotoxicity of HBMEC, decrease the expression of RAGE mRNA and RAGE protein, and increase the expression of GLUT1 mRNA, LRP1 mRNA and LRP1 protein. The results indicated that Sijunzi Decoction could reduce the injury of HBMEC cells induced by Aβ_(25-35) oligomer, and regulate the transport-related proteins GLUT1, RAGE and LRP1, which might be the mechanism of regulating Aβ_(25-35) transport across the blood-brain barrier.


Subject(s)
Animals , Humans , Amyloid beta-Peptides , Blood-Brain Barrier , Drugs, Chinese Herbal , Endothelial Cells
17.
Rev. Assoc. Med. Bras. (1992) ; 65(3): 460-468, Mar. 2019. graf
Article in English | LILACS | ID: biblio-1003053

ABSTRACT

SUMMARY INTRODUCTION: Glioblastoma (GBM) is the most frequent primary malignant tumor from the central nervous system in adults. However, the presence of systemic metastasis is an extremely rare event. The objective of this study was to review the literature, evaluating the possible biological mechanisms related to the occurrence of systemic metastasis in patients diagnosed with GBM. RESULTS: The mechanisms that may be related to GBM systemic dissemination are the blood-brain barrier breach, often seen in GBM cases, by the tumor itself or by surgical procedures, gaining access to blood and lymphatic vessels, associated with the acquisition of mesenchymal features of invasiveness, resistance to the immune mechanisms of defense and hostile environment through quiescence. CONCLUSIONS: Tumor cells must overcome many obstacles until the development of systemic metastasis. The physiologic mechanisms are not completely clear. Although not fully understood, the pathophysiological understanding of the mechanisms that may be associated with the systemic spread is salutary for a global understanding of the disease. In addition, this knowledge may be used as a basis for a therapy to be performed in patients diagnosed with GBM distant metastasis.


RESUMO INTRODUÇÃO: Glioblastoma (GBM) é o tumor maligno mais comum do sistema nervoso central em adultos. Entretanto, metástase a distância de GBM é um evento extremamente raro. O presente estudo teve o objetivo de realizar uma revisão da literatura para avaliar os possíveis mecanismos biológicos relacionados com a ocorrência de metástase a distância de pacientes com diagnóstico de GBM. RESULTADOS: Os mecanismos que podem estar relacionados com a capacidade de disseminação sistêmica do GBM são a quebra de barreira hematoencefálica (BHE) frequentemente vista em GBM, seja pela doença, seja por procedimentos cirúrgicos, dando acesso aos vasos sanguíneos e linfáticos, associada à aquisição de características mesenquimais de invasividade, resistência aos mecanismos de defesa do sistema imunológico e adaptação a hostilidades dos meios distantes por meio de quiescência. CONCLUSÕES: As células tumorais necessitam vencer diversos obstáculos até a formação de uma metástase distante. Apesar de não totalmente esclarecido, o entendimento fisiopatológico dos mecanismos pelos quais podem estar associados à disseminação sistêmica do GBM é salutar para a compreensão global da doença. Além disso, esse conhecimento pode servir de base para a terapia a ser empregada diante do paciente com diagnóstico de GBM com metástase a distância.


Subject(s)
Humans , Central Nervous System Neoplasms/pathology , Glioblastoma/secondary , Neoplasm Metastasis/immunology , Blood-Brain Barrier/pathology , Central Nervous System Neoplasms/immunology , Glioblastoma/immunology , Immunocompetence
18.
Acta sci., Biol. sci ; 41: e46629, 20190000. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460875

ABSTRACT

Clitoria ternateaL. is a vital ayurvedic herbfeatured with a wide spectrum of mental health benefits. The present study investigates the competence of the plant against depression and to inhibit the membrane efflux protein P-glycoprotein (P-gp) that can regulate and restrict drug permeation into the brain. Antidepressant competence of the aqueous plant extract was assessed by animal despair studies on depression induced female mice models. The P-glycoprotein inhibitory potential of active phytocompounds was evaluated by molecular docking assay and substantiated by a cell line study. The in vivostudies exhibited a significant difference in the immobility time thereby establishing antidepressant activity. The histopathological sections from cortex region of treated brain showed decreased degenerative changes. Ten imperative phytocompounds facilitated docking complexes against P-glycoprotein among which Kaempferol 3-O-(2״,6״-di-O-rhamnopyranosyl) glucopyranoside exhibited a finest docking score of -12.569 kcal mol-1. Conversely it was attested by the rhodamine transport assay that demonstrated the inhibitory potential to surpass blood brain barrier. The outcome of the study endorses the efficacy of Clitoria ternateaL. as an idyllic brain drug and facilitates brain permeability.


Subject(s)
Antidepressive Agents , Medicine, Ayurvedic , Blood-Brain Barrier , Biotechnology , ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis
19.
Biomolecules & Therapeutics ; : 168-177, 2019.
Article in English | WPRIM | ID: wpr-739661

ABSTRACT

Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.


Subject(s)
Adult , Animals , Humans , Mice , Autistic Disorder , Blood-Brain Barrier , Cell Death , Cerebrospinal Fluid , Grooming , Injections, Intraperitoneal , Mass Screening , Mice, Inbred ICR , N-Methylaspartate , Neurons , Nociception , Pathology , Synaptic Transmission , Tail
20.
Experimental Neurobiology ; : 216-228, 2019.
Article in English | WPRIM | ID: wpr-739543

ABSTRACT

The complement cascade is a central component of innate immunity which plays a critical role in brain inflammation. Complement C3a receptor (C3aR) is a key mediator of post-ischemic cerebral injury, and pharmacological antagonism of the C3a receptor is neuroprotective in stroke. Cerebral ischemia injures brain endothelial cells, causing blood brain barrier (BBB) disruption which further exacerbates ischemic neuronal injury. In this study, we used an in vitro model of ischemia (oxygen glucose deprivation; OGD) to investigate the protective effect of a C3aR antagonist (C3aRA, SB290157) on brain endothelial cells (bEnd.3). Following 24 hours of reperfusion, OGD-induced cell death was assessed by TUNEL and Caspase-3 staining. Western blot and immunocytochemistry were utilized to demonstrate that OGD upregulates inflammatory, oxidative stress and antioxidant markers (ICAM-1, Cox-2, Nox-2 and MnSOD) in endothelial cells and that C3aRA treatment significantly attenuate these markers. We also found that C3aRA administration restored the expression level of the tight junction protein occludin in endothelial cells following OGD. Interestingly, OGD/reperfusion injury increased the phosphorylation of ERK1/2 and C3aR inhibition significantly reduced the activation of ERK suggesting that endothelial C3aR may act via ERK signaling. Furthermore, exogenous C3a administration stimulates these same inflammatory mechanisms both with and without OGD, and C3aRA suppresses these C3a-mediated responses, supporting an antagonist role for C3aRA. Based on these results, we conclude that C3aRA administration attenuates inflammation, oxidative stress, ERK activation, and protects brain endothelial cells following experimental brain ischemia.


Subject(s)
Blood-Brain Barrier , Blotting, Western , Brain Ischemia , Brain , Caspase 3 , Cell Death , Complement C3a , Complement System Proteins , Encephalitis , Endothelial Cells , Glucose , Immunity, Innate , Immunohistochemistry , In Situ Nick-End Labeling , In Vitro Techniques , Inflammation , Ischemia , Neurons , Occludin , Oxidative Stress , Phosphorylation , Reperfusion , Stroke , Tight Junctions
SELECTION OF CITATIONS
SEARCH DETAIL